FEA-Based Calculation of Performances of IPM Machines with Five Topologies for Hybrid- Electric Vehicle Traction
نویسندگان
چکیده
The paper presents a detailed calculation of characteristic of five different topology permanent magnet machines for high performance traction including hybrid -electric vehicles using finite element analysis (FEA) method. These machines include V-shape single layer interior PM, W-shape single-layer interior PM, Segment interior PM and surface PM on the rotor and with distributed winding on the stator. The performance characteristics which include the back-emf voltage and its harmonic, magnet mass, iron loss and ripple torque are compared and analyzed. One of a 7.5kW IPM prototype was tested and verified finite-element analysis results. The aim of the paper is given some guidance and reference for machine designer which are interested in IPM machine selection for high performance traction application. Keywords—Interior permanent magnet machine, finite-element analysis (FEA), five topologies, electric vehicle.
منابع مشابه
Inner Permanent Magnet Synchronous Machine Optimization for HEV Traction Drive Application in Order to Achieve Maximum Torque per Ampere
Recently, Inner permanent magnet (IPM) synchronous machines have been introduced as a possible traction motor in hybrid electric vehicle (HEV) and traction applications due to their unique merits. In order to achieve maximum torque per ampere (MTPA), optimization of the motor geometry parameters is necessary. This paper Presents a design method to achieve minimum volume, MTPA and minimum ...
متن کاملA New Subdomain Method for Performances Computation in Interior Permanent-Magnet (IPM) Machines
In this research work, an improved two-dimensional semi-analytical subdomain based method for performance computation in IPM machine considering infinite-/finite-magnetic material permeability in pseudo-Cartesian coordinates by using hyperbolic functions has been presented. In the developed technique, all subdomains are divided into periodic or non-periodic regions with homogeneous or non-homog...
متن کاملOptimal Design of Axial Flux Permanent Magnet Synchronous Motor for Electric Vehicle Applications Using GAand FEM
Axial Flux Permanent Magnet (AFPM) machines are attractive candidates for Electric Vehicles (EVs) applications due to their axial compact structure, high efficiency, high power and torque density. This paper presents general design characteristics of AFPM machines. Moreover, torque density of the machine which is selected as main objective function, is enhanced by using Genetic Algorithm (GA) a...
متن کاملA Novel Hybrid-Excited Modular Variable Reluctance Motor for Electric Vehicle Applications: Analysis, Comparison, and Implementation
A variable reluctance machine (VRM) has been proven to be an outstanding candidate for electric vehicle (EV) applications. This paper introduces a new double-stator, 12/14/12-pole three-phase hybrid-excited modular variable reluctance machine (MVRM) for EV applications. In order to demonstrate the superiorities of the proposed structure, the static torque characteristics and dynamic performance...
متن کاملA Stator and Rotor Fault Detection Technique for Induction Machines in Traction Applications for Electric or Hybrid Electric Vehicles
Three phase induction machines for traction applications in electric and hybrid electric vehicles can be used with a fixed gear due to the wide speed range enabled by field weakening. Although the induction machine is know as an extremely reliable and robust device, machine faults may occur. Machine faults which do not become detected may cause complete failure of the vehicle. Therefore, early ...
متن کامل